Half-term Report on
VDEX Implementation Project

Authors: Tina Manoharan & Phil Barker. ICBL, School of Mathematics and Computer Science, Heriot-Watt University, Edinburgh.

Date: 05 Nov 2003

Coverage: This report covers the work up until mid October 2003.

Location: http://www.icbl.hw.ac.uk/vdex

Summary

We are currently implementing the IMS VDEX draft specification in order to explore how it might assist the creation of metadata for Learning Objects. The starting point for the implementation is the metadata editor in the Reload package. This work has helped to identify strengths and weaknesses with the VDEX draft and the Reload editor, and helped us to explain possible uses of the VDEX specification to potential implementers.

Aims and Objectives of the Project

The broad aim of this project is to gain experience of using the IMS VDEX specification in a way which helps us to pass this experience on to the developers of the specification and other potential implementers.

The initial objectives were:

· To create tool for editing vocabularies in VDEX format.

· To create a VDEX browse tool which will enable a cataloguer to select a VDEX encoded vocabulary, browse through it to find the desired term, and then export that term coded in a suitable format for inclusion in an IEEE LOM metadata instance.

· If time allows, investigate the possibility of a web service based on the VDEX browse tool.

· If time allows, investigate the use of VDEX vocabularies in validating IEEE LOM records.

These have been under continual review, as a result of which we have added:

· A facility for importing and exporting vocabularies encoded in other XML schemas, for example zThes.

Choice of Starting Point

The decision to implement the VDEX editor within the framework of the Reload content packager was influenced by a number of factors.

· We wanted to show how VDEX vocabularies could be used with a metadata editor, but did not want to write such an editor.

· Reload is open source, with no conditions on how the source may be used.

· Reload is written in Java, the language of preference of our developer.

· Reload is schema driven and therefore the editor template can easily be adapted for tasks other than metadata editing.

· Reload is an active project, similar editors (e.g. LOM-editor, ImsieVimsie) do not seem to have been updated recently.

· Reload implements several IMS specifications, and as a result has a high profile within the educational standards community, we were hoping our project would benefit by hanging on to Reload's coat-tails.

· We know some of the Reload project team and work successfully with them on other projects.

Progress:

The first cuts of the VDEX editor and browser were produced in approximately 2 months by a single developer with no previous knowledge of Reload or IMS specifications. The developer's expertise was in Java programming and XML. The following is an approximate break-down of how this time was used:

1. Familiarization with Reload code (2 wks)

The Reload code is well structured and documented (Javadoc comments) so it was easy to understand and follow. But, it took about 2 weeks time to be clear about how the metadata editor uses the various schema and helper files to generate the form and full view, and support the “schema driven” functionality. It was also necessary to understand all the available functions/methods so as to make use of them and not produce duplicate code.

2. Familiarization with VDEX (1 wk)

It took about a week to read the VDEX documents (the information model, the XML binding and the best practice guide) and to relate the specification to the project brief. The available vocabulary examples were found to be useful when trying to understand the XML schemas for the binding.

3. Creating VDEX vocabulary editor (3 wks)

Once you understand the Reload metadata editor code and how it works with the LOM schema it is quite easy to produce another editor that implements a different schema. This is basically because Reload is schema driven. When creating a new editor, most importantly you need to know how to create the necessary helper files (schema, profile and vocabulary files). These helper files, being XML documents, are quite easy to create. Additionally, in the case of VDEX, because there are five different schema profile types (lax, flatTokenTerms, hierarchicalTokenTerms, thesaurus and glossaryOrDictionary), it was necessary to provide the facility to change the schema profile type.
4. Down with chicken pox (2 wks)

Unfortunately 2 weeks time was lost because Tina was down with chicken pox.

5. Creating VDEX browser for metadata editor (2 wks)

The next step after creating a VDEX vocabulary editor was to provide support for using the vocabulary within the metadata editor. For this purpose a VDEX browser was created that lets you browse through a vocabulary. Currently this functionality is provided only for the classification element of the LOM metadata. It took about 2 weeks time to code this. This feature will next be provided for the remaining LOM elements on the metadata editor that requires vocabulary (ongoing work).

Enablers:

The following factors facilitated the creation of the VDEX editor and browser. They are divided into those which pertain to Reload and those which pertain to the VDEX specification, other than that the ordering is not significant.

Reload:

1. Javadoc comments in the Reload code

Since the Reload developers have provided Javadoc comments with the code, it was easy to produce a Javadoc API documentation. This is very useful to identify what classes and functions/methods are available.

2. Well-structured and modular code

The Reload code is well structured and modular and so it is easy to understand and make use of it.

3. XML helper files

All the helper files are XML documents as such it’s easy to understand and create.

4. Schema driven

As Reload is schema driven it’s easy to create new editors that implement a different schema.

VDEX:

1. IMS VDEX best practice guide

The best practice guide was the most useful of the IMS documents in a developer’s point of view.

2. Sample VDEX files

The sample files gave a clear idea of the various VDEX schema profiles. It was useful to understand how to create the Reload helper files for the VDEX vocabulary editor and also what the VDEX files output by Reload should look like. They are also useful to test how the metadata editor can use VDEX vocabulary.

Obstacles:

The following factors hindered the development of the VDEX editor and browser. The order of these obstacles is not significant

Reload:

1. Form view not fully developed

The Reload metadata editor’s form view is currently not fully developed. So, the result of VDEX browse facility is not clear within this view. However, the full view provides good support. Examples of this lack of development are:

· Multiple instances of the same element are not shown. This is more important for viewing vocabularies than metadata since in most metadata instances most elements occur only once, whereas a vocabulary with only one item is rather more limited.

· It is not possible to select alternative sources for LOM elements of vocabulary type in sections 1-8 at run time. This means there is no way for a cataloguer to choose between VDEX encoded vocabularies.

2. Developer guide

A developer guide besides a user guide and Javadoc documentation will be useful. Perhaps an architecture diagram and UML class diagrams showing the main classes and their inter-relationships will be helpful.

VDEX:

1. Unnecessary(?) complexity of VDEX schema

VDEX root element and description element has complexContent within the element (see example a below). The other elements in the schema do not have this additional complexContent within them (see example b below). Because of this difference a small work around was necessary when using the Castor package (http://www.castor.org). The question is, is this extra complexity necessary?

(a) VDEX root element

<xs:element name="VDEX" block="#all">

<xs:complexType>

<xs:complexContent>

<xs:extension base="VDEXType" />

</xs:complexContent>

</xs:complexType>

</xs:element>

 (b) Metadata element

<xs:element name="metadata" type="metadataType" block="#all" />

2. Questions relating to VDEX best practice

The following issues could be addressed in the best practice guide:

a) Which of vocabName and vocabIdentifier maps to vocabulary.source in LOM vocabulary items? How do they map to classification.taxonPath.source?

b) Likewise, which of term.caption and term.termIdentifier maps to vocabulary.value in LOM vocabulary items. (The mapping to classification.taxonPath.taxon seems straightforward but could be made explicit).

c) We envisage that in many cases a cataloguer will be provided with a choice of vocabularies for classification. In such cases it would be useful if there were a way of systematically selecting which vocabularies were suitable for which purpose. For example, when classifying a resource and filling in section 9 of a LOM record, it would be useful to for the end user to specify LOM 9.1 classification.purpose and then be shown a selection of vocabularies which were fit for this purpose, but not those vocabularies which are available for other purposes (there may only be one vocabulary available to the user which is fit for this purpose in which case it could be selected by default). An example of how this could be achieved if the metadata for the vocabulary was a LOM instance such as the following fragment:

1.
<metadata>

2.
<lom xmlns="http://www.imsglobal.org/xsd/imsmd_rootv1p2p1">
3.

<classification>

4.

<purpose>

5.

<source>LOMv1.0</source>

6.

<value>idea</value>

7.

</purpose>

8.

<taxonPath>

9.

<source>LOMv1.0</source>

10.

<taxon>

11.

<entry>educational objective</entry>

12.

</taxon>

13.

</taxonPath>

14.
</classification>

15.</lom>

16.</metadata>

The intention is that the purpose for which the vocabulary is suitable is encoded as the "idea" under which that vocabulary is classified. The vocabulary used for doing this in lines 8-13 is the LOM vocabulary normally used for specifying the purpose of a classification (as in lines 4-7). There are, of course, other ways of supplying this information, for example using the LOM:general.keywords element. It doesn't matter which is used, but it would be helpful for interoperability if the VDEX Best Practice and Implementation Guide suggested a preferred encoding.

Plans

In the remainder of the project we plan to

· Implement the import and export of zThes encoded vocabularies using XSL Transforms in such a way that other enocodings can be handled simply by writing a suitable XSL Transform and plugging it in.

· Allow VDEX encoded vocabularies to be used in other elements which use the LOM vocabulary type.

· Debug the source code.

· Write user documentation.

· Create a stand-alone VDEX editor.

We still hope that this work will be incorporated in to the main Reload distribution, but are not promising to do so.

Reflections

Implementing the VDEX draft specification has allowed us to provide feedback on that draft. We have also found that having an illustrative implementation has helped us to explore some of the potential of VDEX, and perhaps more importantly for us, it has helped us to explain the VDEX draft specification to potential users. We would not have been able to do this in the time scale of the IMS specification public draft process without basing our work on an existing editor. The Reload editor has proven to be entirely suitable to our needs, and we would recommend it to anyone starting a similar project.

References

More information and updates on this work are available at http://www.icbl.hw.ac.uk/vdex, which also contains links to further information on all the specifications mentioned in this report.

